
Arguing Security - Creating Security Assurance Cases 1
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

Arguing Security - Creating Security Assurance Cases
John Goodenough, Software Engineering Institute [vita1]

Howard Lipson, Software Engineering Institute [vita2]

Chuck Weinstock, Software Engineering Institute [vita3]

Copyright © 2007, 2008 Carnegie Mellon University

2007-1-4; Updated 2008-10-9 L1 / (E), L, M4    

An assurance case is a body of evidence organized into an argument demonstrating that some claim about a
system holds, i.e., is assured. An assurance case is needed when it is important to show that a system exhibits
some complex property such as safety, security, or reliability. In this article, our objective is to explain an
approach to documenting an assurance case for system security, i.e., a security assurance case or, more
succinctly, a security case.

Acknowledgements
Reviews by Sam Redwine, Andy Moore, Ann Miller, Gary McGraw, Nancy Mead, Bob Ellison, and Pamela
Curtis are gratefully acknowledged.

Introduction

A security assurance case5 is similar to a legal case. It presents arguments showing how a top-level claim
(such as “The system is acceptably secure”) is supported by objective evidence. Unlike a typical product
certification, a security case considers people and processes as well as technology. A case is developed by
showing how the top-level claim is supported by subclaims. For example, part of a security assurance case
would typically address various sources of security vulnerabilities. Among them, the case would probably
claim that a system has none of the common coding defects that lead to security vulnerabilities, including

for example buffer overflow vulnerabilities.6 A subclaim about the absence of buffer overflow vulnerabilities
could be supported by showing that (1) programmers were trained on how to write code that minimizes the
possibility of buffer overflow vulnerabilities; (2) experienced programmers reviewed the code to see if any
buffer overflow possibilities existed and found none; (3) a static analysis tool scanned the code and found no
problems; and (4) the system and its components were tested with invalid arguments and all such inputs were
rejected or properly handled as exceptions.

In this example, the “evidence” would consist of programmer training credentials, the results of the
code review, the output of the code scanner, and the results of the invalid-input tests. The “argument”
is, “Following best coding practice has value in preventing buffer overflow coding defects. Each of the
other methods has value in detecting buffer overflow defects; none of them detected such defects (or these

defects were corrected7), and so, the existing evidence supports the claim that there are no buffer overflow

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/654-BSI.html (Goodenough, John)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html (Lipson, Howard F.)
3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/664-BSI.html (Weinstock, Charles B.)
5. Assurance cases were originally used to show that systems satisfied their safety-critical properties. In this usage, they were (and

are) called safety cases. The notation and approach used in this article has been used for over a decade in Europe to document
why a system is sufficiently safe [Kelly 1998, Kelly 2004]. The application of the concept to reliability was documented in an
SAE Standard [SAE 2004]. In this article, we extend the concept to cover system security claims.

6. Buffer overflows have been exploited by attackers more than any other class of vulnerability. Further information about the
common coding defects that lead to security vulnerabilities can be found elsewhere on the BSI web site and in the computer
security literature [BSI 2007b, BSI 2007c, BSI 2007d, BSI 2007e, Howard 2005, Lipner 2005, McGraw 2006, Seacord 2006,
Voas 1997, and Viega 2001].

7. The proper response to the detection of programmer errors is not simply to correct the code, but also to keep a record of the
defects found and to use that information to improve the process that created the defect. For example, based on the nature of the
defects detected, the training of programmers in best coding practices may have to be improved. One might also search other
products for similar defects and remind (or retrain) programmers regarding these defects.

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/654-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/664-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html


Arguing Security - Creating Security Assurance Cases 2
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

vulnerabilities.”8 Further information could show that this claim is incorrect. Our confidence in the argument
(i.e., in the soundness of the claim) depends on how convincing we find the argument and the evidence.
Moreover, if we believe that the consequences of an invalid claim are sufficiently serious, we might require
that further evidence or other subclaims be developed. The seriousness of a claim would depend on the
potential severity of an attack (e.g., projected economic loss, injury, or death) related to that claim and on
the significance of the threat of such an attack. Although an in-depth discussion of the relation of threat and
impact to security cases is beyond the scope of this article, a comprehensive security case should include,
or at least be developed in the context of, analyses of the threats to a system and the projected impact of
successful attacks.

The structure for a partially developed security assurance case focusing on buffer overflow coding defects

is shown in Figure 19. The case is presented in a graphical notation called Goal Structuring Notation (GSN)

[Kelly 200410].

The case starts with a claim (in the shape of a rectangle) that “The system is acceptably secure.” To the right,
a box with two rounded sides, labeled “Acceptably Secure,” provides context for the claim. This element
of the case provides additional information on what it means for the system to be “acceptably” secure. For
example, the referenced document might cite HIPAA requirements as they apply to a particular system, or it
might classify the kinds of security breaches that would lead to different levels of loss (laying the basis for an
expectation that more effort will be spent to prevent the more significant losses).

Under the top-level claim is a parallelogram labeled “SDLC.” This element shows the strategy to be used
in developing an argument supporting the top-level claim. Explicitly showing the strategy is optional but
provides helpful insight to anyone reviewing the case. In this example, the strategy is to address potential
security vulnerabilities arising at the different stages of the software development life cycle (SDLC), namely,

requirements, design, implementation (coding), and operation.11 One source of deficiencies is coding
defects, which is the topic of one of the four subclaims. The other subclaims cover requirements, design,
and operational deficiencies. (The diamond under a claim indicates that further development—i.e., further
expansion—is required to fully elaborate the claim-argument-evidence substructure.) The structure of the
argument implies that if these four subclaims are satisfied, then the system is acceptably secure.

The strategy for arguing that there are no coding defects involves addressing actions taken both to prevent

and detect possible vulnerabilities caused by coding defects.12 In Figure 113, only one possible coding
defect, buffer overflow, is developed. Three types of evidence are developed to increase our confidence
that no buffer overflow vulnerabilities are present. These types of evidence are associated with each of
three subclaims. The “Code Scanned” subclaim asserts that static analysis of the code has demonstrated
the absence of buffer overflow defects. Below that are the subclaims that the tool definitively reported “No
Defects” and also that all warnings reported by the tool were all subsequently verified as false alarms (i.e.,
“Warnings OK”). Below these subclaims are two pieces of evidence. The first is the tool output, which is the
result of running the static analysis tool. The second is the resolution of each warning message, showing why
each was a false alarm.

8. Of course, despite our best efforts, this claim might be invalid; the degree of confidence that we have in the argument supporting
any given claim is an assertion about the case itself rather than an assertion about what is claimed, that is, when we say a system
is “acceptably” secure or that it meets its security requirements, we provide an argument and evidence in support of these
claims. The extent to which the case is convincing (or valid) is determined when the case is reviewed.

9. #dsy643-BSI_figure1
10. #dsy643-BSI_kelly2004
11. We omit validation or testing (as a development activity) because these will be included within the security case itself.
12. The strategy might also consider actions taken to mitigate possible vulnerabilities caused by coding defects, although we don’t

illustrate this in our example. Such actions could include the use of tools and techniques that provide runtime protection against
buffer overflow exploits [Plakosh 2006] in the event that some buffer overflow vulnerability was neither prevented nor detected
prior to release of the code. Although not illustrated in our example, the strategy might also include a formal methods approach
[Chaki 2006].

13. #dsy643-BSI_figure1

#dsy643-BSI_figure1
#dsy643-BSI_kelly2004
#dsy643-BSI_figure1


Arguing Security - Creating Security Assurance Cases 3
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

This is not a complete exposition of GSN. For instance, two other symbols, not shown in Figure 114,
include “justification” and “assumption.” As with the context element, these are used to provide additional
information helpful in understanding the claim.

Figure 1. Partially expanded security assurance case that focuses on buffer overflow

14. #dsy643-BSI_figure1

#dsy643-BSI_figure1


Arguing Security - Creating Security Assurance Cases 4
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

The claims in the example are primarily product-focused and technical (i.e., the claims address software
engineering issues). An assurance case may also require taking into account legal, regulatory, economic



Arguing Security - Creating Security Assurance Cases 5
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

(e.g., insurance), and other non-technical issues [Lipson 200217]. For example, a more complete case might
contain claims reflecting the importance of legal or regulatory requirements relating to Sarbanes-Oxley or
HIPAA. In addition, an analysis of the threat and consequences of security breaches will affect how much
effort is put into developing certain claims or types of argument. If a security breach can lead to a major
regulatory fine, the case may require a higher standard of evidence and argumentation than if a breach has
little economic penalty.

Developing a security assurance case is not a trivial matter. In any real system the number of claims involved
and the amount of evidence required will be significant. The effort involved is offset by an expected decrease
in effort required to find and fix security-related problems at the back end of product development and
by a reduced level of security breaches with their attendant costs. Although we believe that the return
on investment (ROI) for developing security cases would typically be substantial, work is needed in the

community to gather the hard evidence necessary to support this assumption.18

Creating and evolving the security case as the system is being developed is highly recommended.
Developing even the preliminary outlines of an assurance case as early as possible in the software
development life cycle (SDLC) can lead to improvement in the development process by focusing attention
on what needs to be assured and what evidence needs to be developed at each subsequent stage of the SDLC.
Attempting to gather or generate the necessary security case evidence once development is complete may not
only be much more costly, it may be impossible.

In the next section, we present a method for diagramming the overall structure of a security assurance case
so it is easier to review for completeness and soundness. We are not so much interested in discussing specific
techniques for gathering evidence or making arguments as we are in showing how to document the case so it
can be reviewed and evaluated for sound reasoning and in light of the evidence. In a later section, we present
the concept of a “security case pattern,” which takes advantage of the fact that certain arguments occur again
and again when evaluating security claims. We will discuss how to create and use such patterns.

How to Create a Security Assurance Case
Creating and presenting security assurance cases in a form that facilitates outside review requires some care.
While the case can be presented textually, reviewers often find a graphical representation much easier to
understand, and we expect that developers and maintainers will find it more useful as well.

Argument Structure
A security assurance case consists of a structured collection of security-related claims, arguments, and
evidence. A claim embodies what is to be shown; an argument tells why to believe a claim has been met,
based upon subclaims and evidence such as results of tests, simulations, analysis, etc. Reviewers must be
able to understand a security case, so how the evidence supports a claim needs to be clear. Having just a
single top-level claim (e.g., “The system does what it’s supposed to do”) and supporting evidence, without
knowing specifically how the evidence relates to the claims, is not appropriate. Instead of requiring a giant
leap from top-level claim to evidence, a security assurance case breaks claims into subclaims, each of which

is broken into yet another level of subclaims (as in Figure 119) until the step to the actual evidence that

supports that subclaim is reasonably small. This structure is shown in Figure 220.

Figure 2. The “claim-argument-evidence” structure of an assurance case

17. #dsy643-BSI_lipson2002
18. See the BSI website content areas on Business Case and Measurement for material relevant to making ROI arguments [BSI

2007a, BSI 2007f].
19. #dsy643-BSI_figure1
20. #dsy643-BSI_figure2

#dsy643-BSI_lipson2002
#dsy643-BSI_figure1
#dsy643-BSI_figure2


Arguing Security - Creating Security Assurance Cases 6
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

if Evidence A & Evidence B & Evidence C then Claim 1
“Argument”:
 if Evidence A then Claim 2
 if Evidence B then Claim 4
if Evidence C then Claim 5
 if Claim 4 & Claim 5 then Claim 3
if Claim 2 & Claim 3 then Claim 1

Creating a Structured Argument

Claims
Creating a structured argument is a relatively straightforward process, best accomplished in a top-down
manner. The process starts by identifying top-level claims to be made. These top-level claims should provide
the “take-home” message for the reviewers and should convince them (if supported) that the required
attributes have been satisfied. In general, claims should be straightforward statements that do not consider
implementation details. “System X is acceptably secure” might be a good top-level claim while “System X
is acceptably secure through the use of a virtual private network” is not. The implementation details should
be part of the support of the claim, not part of the claim itself. That said, it is also important that the top-
level claim not be over-simplified. “System X is secure” is not as useful a top-level claim as “System X is
acceptably secure.” The latter claim allows for a richer and more realistic argument structure involving cost/
benefit analyses and risk-management tradeoffs. Getting the top-level claim right is important. It is the seed
from which the arguments can develop, and if it doesn’t contain the right concepts or includes too-specific
details its usefulness may be limited.

The following are examples of claims that are properly worded:

• The tool detected no defects.

• The system is acceptably secure.



Arguing Security - Creating Security Assurance Cases 7
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

The following are examples of claims that are poorly worded:

• Hazard Log for System Y (describes an entity)

• Run static analysis tool Z (an action, not a statement).

A claim is properly worded if it is a predicate, i.e., a statement that is either true or false.

Establishing Context
The text that states each claim must be succinct and unambiguous if the argument is to be reviewable. Yet
it is often necessary to provide additional information that is not directly part of the argument. For instance
the claim may contain terms that are not generally known, or it may refer to a standard or a requirements
document, etc. Context is used to provide this additional information. For example: “Context: Acceptably
secure for this system is defined in requirements document R.” The context is not a part of the actual
argument. Justification and assumption cues are used similarly: to provide additional information to make the
argument more understandable.

Identifying Strategy
As defined above, the strategy is an additional cue that helps the reader understand the form that an argument
is going to take. Instead of being true or false statements, as the claims and subclaims are, the strategy
provides information on how to substantiate the stated claim. The strategy can take many forms, but it is

often simply a matter of presentation. The example in Figure 122 shows strategies (i.e., the “SDLC” and
“Prevention and Detection” parallelograms) that describe how a claim is to be supported, typically by
subclaims that cover all relevant possibilities, each of which is likely to be easier to deal with than the overall
claim.

The strategy can be explicit (as in Figure 123) or implicit (as it would be if we hadn’t added any strategies to
that figure). Sometimes the strategy is obvious from the layout of the subclaims, in which case an implicit
strategy is fine. However, if the relationship between a claim and a set of subclaims has any complexity, or if
the strategy being used requires additional context, it should be explicit.

Strategies should not contain claims. They should be phrased with respect to the argument, not with respect
to the design, testing, or analysis approach. Thus it would be wrong to say “Use Byzantine Agreement
protocol.” Rather the strategy should be “Argument by appeal to the Byzantine Agreement protocol.”
Technically, removing a strategy cue does not affect the argument being made, but can affect ease and
correctness of understanding. As with claims, it is sometimes helpful to link context, justification, or
assumptions to the strategy.

Elaborating the Strategy
A strategy is elaborated by providing a series of subclaims that fulfill the selected approach. For example,
for a strategy ranging over all subsystems, claims must be made that cover each individual subsystem. For a
strategy involving quantitative results there must be quantitative claims. Elaborating these claims is exactly
the same as elaborating the top-level claim. If a good strategy has been chosen and the basis for the strategy
is clear, this can be very straightforward.

Evidence
Eventually, as the expansion continues, there will come a point where a claim needs no further refinement
and can be directly supported by evidence. For instance, see the “evidence circles” at the bottom of Figure

124, which support the subclaims directly above them. The evidence elements show the results of running a
static analysis tool, the results of reviewing any warnings produced by the tool, and the results of testing the
code with invalid input.

22. #dsy643-BSI_figure1
23. #dsy643-BSI_figure1
24. #dsy643-BSI_figure1

#dsy643-BSI_figure1
#dsy643-BSI_figure1
#dsy643-BSI_figure1
#dsy643-BSI_figure1


Arguing Security - Creating Security Assurance Cases 8
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

One caveat: what may seem obvious (and therefore not requiring refinement) to the creator of an assurance
case may not be at all obvious to the typical reader of the case. When in doubt, it is best to err on the side of
providing too many steps between a claim and its supporting evidence rather than too few.

Any type of evidence can support security assurance arguments, but clearly some types of evidence are
better than others. The BSI article, “Evidence of Assurance: Laying the Foundation for a Credible Security

Case,” [Lipson 200825] presents examples of the kinds of evidence that may be well suited for use in security
cases. Details on the kinds of evidence that could support assurance arguments about security properties are

also given throughout the Software Assurance Common Body of Knowledge (SwA CBK) [Redwine 200726]

(in particular, see Table 5, "Kinds of Evidence").27

It is important to realize that the terse descriptions that appear inside the “evidence circles” in our security
assurance case example are simply references to the actual evidence. The GSN tool provides a capability
for adding hyperlinks so that a security assurance case can serve as an index to a collection of documents
representing relevant evidence. More sophisticated tools could allow the case to serve as, or to be an integral
part of, an evidence repository.

Tools and Notation
Although this document has shown the development of a security assurance case using the Goal Structuring

Notation, other notations are available (e.g., Adelard Safety Case Development – ASCAD [Adelard 200328]).
As long as the structure of the argument is clearly presented, the method of exposition of the case and the

tools used to develop the case are at the discretion of the case’s creator.29

Although an assurance case presented in GSN can be created using any general-purpose graphics editor,
direct tool support for GSN is available to ease the process. An example of a commercially-available tool
that supports GSN (along with some other relevant notations) is Adelard’s Assurance and Safety Case

Environment30.

The Security Assurance Case Throughout the Life Cycle
For maximum utility, a security assurance case is a document that changes as the system it documents
changes. The case takes on a different character as a project moves through its life cycle. In the pre-
development stage the case focuses on showing that

• the plan for a security case is appropriate for the security requirements of the proposed system,

• the technical proposals are appropriate for achieving the security requirements of the proposed system,
and

• it will be possible to demonstrate that security has been achieved during the project.

At development time the security assurance case (which is derived from the pre-development case) is

• updated with the results of all activities that contribute to the security evaluation (including evidence
and argumentation) so that, by the time of deployment, the case will be complete, and

• presented at design (and other) reviews and the outcomes included in the case.

Using a configuration control mechanism to manage the security case will ensure its integrity as well as help
the case always be relevant to the development status.

Security cases provide a structured framework for evaluating the impact of changes to the system and can
help ensure that the changes do not adversely impact security. The case should continue to be maintained

25. #dsy643-BSI_lipson08
26. #dsy643-BSI_redwine2006
27. There are also discussions of relevant concepts, principles, and practices (and extensive references to the software assurance

literature).
28. #dsy643-BSI_adelard2003
29. One of the earliest prototype tools for creating and documenting security assurance arguments was the Visual Network Rating

Methodology, developed at the Naval Research Laboratory [Park 2001].
30. http://www.adelard.com/web/hnav/ASCE/index.html

#dsy643-BSI_lipson08
#dsy643-BSI_redwine2006
#dsy643-BSI_adelard2003
http://www.adelard.com/web/hnav/ASCE/index.html
http://www.adelard.com/web/hnav/ASCE/index.html


Arguing Security - Creating Security Assurance Cases 9
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

after deployment of the system, especially whenever the system is modified. Examining the current case can
help determine if modifications will invalidate or change arguments and claims and, if so, will help identify
the appropriate parts of the case that need to be updated. Further, if parts of the system prove insecure even
in the face of a well-developed case, it is important to understand why this particular chain of evidence-
argument-claim reasoning was insufficient.

How to Create Security Case Patterns

The Need for Patterns
The process of developing an assurance case is simplified, somewhat, through the introduction of assurance
case patterns. Patterns maintain the structure, but not the specific details, of an argument and therefore can
be instantiated in multiple situations as appropriate. By building a catalog of patterns (i.e., templates), one
can facilitate the process of assurance case creation and documentation. Assurance case patterns offer the
benefits of reuse and repeatability of process, as well as providing some notion of coverage or completeness
of the evidence.

Our specific focus is on how to develop and use such patterns for security cases. The salient characteristic
of a security case is that it is a structured artifact that is reviewable by a broad range of stakeholders, not
limited to security experts. Security case patterns offer the promise of extending the engineering benefits of
a repeatable process to the development of security cases for a wide range of software development projects.
Reuse of a common argument structure eases the creation of security cases since each case no longer has
to be custom-built. A pattern that has been “battle-tested” through repeated use (especially if shared among
multiple organizations) is more likely to be complete in its coverage than a new security case developed from
scratch, and so, important variations of evidentiary and argument chains are less likely to be overlooked. A
repeatable process is more amenable to oversight, training of personnel, detection of defects, and continuous
improvement. Moreover, the return on investment of a repeatable process may be easier to determine.

To fully support reusability, a security case pattern should clearly outline the security claim, the profile of
the argument to be made, the types of evidence that support that argument, and possibly some measures or
weighting of the value of particular (types of) evidence. The context or conditions under which the particular
pattern applies should also be fully specified, as well as how the pattern is instantiated, pitfalls in applying
the pattern, and when the pattern should not be used. We would expect to see such well-crafted security case
patterns become more commonplace as the community gains experience in creating and evaluating security
case patterns and their instantiations. Moreover, security case patterns can serve to embody “best practices”
for developing secure systems. For example, the application of static code analysis tools is a best practice

that is recommended elsewhere in the BSI website (see Code Analysis31 and Source Code Analysis32). In

Figure 133, we included this practice in our example security case. A case that includes a larger number of
such best practices would presumably be considered more convincing by knowledgeable reviewers.

Turning Our Previous Example Into a Pattern
A very simple and straightforward way to create a security case pattern is to start with a given security

case and then parameterize one or more of the content elements. For example, we can turn Figure 134 into a
pattern by documenting where choices can be made. The resulting security case pattern is shown in Figure

335, where we have added two black diamond symbols to identify choices. The “at least 1” connector allows
a choice among the argument structures for “Code Review,” “Code Scanned,” and “Robustness Testing.”
The pattern indicates that the “Coding Defect” claim can be supported either by code review, static analysis,
or robustness testing and that at least one of these alternatives should be selected for each type of coding

31. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/code/214-BSI.html (Code Analysis)
32. http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html (Source Code Analysis)
33. #dsy643-BSI_figure1
34. #dsy643-BSI_figure1
35. #dsy643-BSI_figure3

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/code/214-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools/code.html
#dsy643-BSI_figure1
#dsy643-BSI_figure1
#dsy643-BSI_figure3
#dsy643-BSI_figure3


Arguing Security - Creating Security Assurance Cases 10
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

defect. When the consequences of a type of coding defect are potentially more severe, the developer of the
assurance case might want to improve the credibility of the case by selecting two of the three alternatives,

or even all three, as we did in Figure 136. On the other hand, certain types of coding defects may not be
detectable by an existing static analysis tool, in which case this alternative would be eliminated from the
case. When applying a pattern and eliminating an alternative, it is a good idea to insert some justification
explaining the absence of that alternative in the context of your particular circumstances in order to show that
you have not simply overlooked a common argument structure or type of evidence that could contribute to
your case.

The second use of the black diamond is associated with the claim “Code Scanned.” This diamond says that
one of the two possibilities must be chosen, since they are mutually exclusive: either the tool produces no
warnings, in which case nothing further is to be done, or the tool produces warnings, and further analysis is
needed to show that the warnings are benign.

The shaded elements of Figure 337 have been further parameterized with text in braces indicating how a
particular claim or piece of evidence is to be instantiated. The parameter “Coding Defect Type X” replaces

the specific defect “Buffer Overflow” that appeared in several places in Figure 138.

Using Patterns
Security case patterns are claims-argument-evidence structures that can be reused in many different security
cases. The security case method offers the opportunity for security and domain experts to codify security
knowledge and mitigation strategies in the form of security case patterns. Such patterns can then be shared
among the security community and other stakeholder communities and continually built upon, refined,
and improved. We envision a growing repository of security case patterns for a variety of domains and
operational contexts that not only would provide greater opportunities for reuse and standardization of
assurance arguments, but also (with appropriate information sharing) could allow the security community to
associate an historical record of security performance (and return on investment) with particular security case
patterns. The historical record of systems built with particular security case patterns can itself contribute to
the evidence necessary to make a compelling argument that a system satisfies its desired security properties!
However, to safely enable widespread sharing of security case patterns, the importance of understanding and
clearly specifying the environmental and operational context within which a security case pattern is valid
cannot be overemphasized.

Finally, security case patterns that are proven effective and widely shared can encourage worthwhile
improvements in organizations’ development processes so that the artifacts needed by the security case
patterns are created by the development processes at the appropriate stages of the software development life
cycle.

Figure 3. A security case pattern

36. https://buildsecurityin.us-cert.gov/daisy/bsi/643/edit/7e6b882f0f6a3b654e7c512627787c5033135041/part-article-body#figure1
37. #dsy643-BSI_figure3
38. https://buildsecurityin.us-cert.gov/daisy/bsi/643/edit/7e6b882f0f6a3b654e7c512627787c5033135041/part-article-body#figure1

https://buildsecurityin.us-cert.gov/daisy/bsi/643/edit/7e6b882f0f6a3b654e7c512627787c5033135041/part-article-body#figure1
#dsy643-BSI_figure3
https://buildsecurityin.us-cert.gov/daisy/bsi/643/edit/7e6b882f0f6a3b654e7c512627787c5033135041/part-article-body#figure1


Arguing Security - Creating Security Assurance Cases 11
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

Related Security Assurance and Compliance Efforts
This section briefly describes how some existing assurance and compliance efforts relate to security cases
and patterns.



Arguing Security - Creating Security Assurance Cases 12
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

Security-Privacy Laws and Regulations
Laws and regulations such as Sarbanes-Oxley and HIPAA mandate specific security and privacy
requirements. Security assurance cases can be used to argue that a corporation is in compliance with a
given law or regulation. One can envision the development of security case patterns for particular laws or
regulations to assist in demonstrating compliance.

Common Criteria

The Common Criteria (CC) [CCMB 2006-741, CCMB 200742] is an internationally recognized standard
for evaluating security products and systems. Protection profiles represent sets of security requirements
that products can be evaluated and certified against. The results of a CC evaluation include an Evaluation
Assurance Level (EAL), which indicates the strength of assurance. Though a CC evaluation has elements
that are similar to a security case, the security case is a more general framework, into which the results of CC
evaluations can be placed as evidence of assurance.

Anyone creating a product or system meant to satisfy a protection profile needs a way to argue that it in
fact meets the profile. Unlike ad hoc approaches to arguing security, the security case method provides
an organizing structure and a common “language” that can be used to make assurance arguments about
satisfying the set of requirements in a protection profile (at a particular EAL), as well as providing a broader
framework that can be used to place CC evaluations in the context of other available evidence of assurance.

The standard format of CC evaluations allows for reuse of some of the basic elements in an assurance
argument and hence may be thought of as providing patterns of evaluation. For example, the Common
Criteria provides catalogs of standard Security Functional Requirements and Security Assurance
Requirements. In contrast, security case patterns allow for the reuse of entire claim-argument-evidence
structures and are therefore patterns in a much more general sense. Unlike CC evaluations, a security case is
well suited to be maintained over time as a system development artifact, so the assurance case could evolve
along with the system, always reflecting the system’s current state and configuration.

Community Activities
An international community has begun to work on the topic of assurance cases for security and in the process

has formed the International Working Group on Assurance Cases (for Security) [Bloomfield 2006a43]. The
first organized activity related to this was a workshop entitled “Assurance Cases: Best Practices, Possible
Obstacles, and Future Opportunities,” which was part of the International Conference on Dependable
Systems and Networks in Florence, Italy, in June 2004. Its purpose was to promote communication among
groups that were working in the broad area of assurance cases. An important result of the workshop was the
decision to take this work further in the security area.

Accordingly, in June 2005, the SEI hosted the Workshop on Assurance Cases for Security in the
Washington, DC area. The workshop brought together people working on assuring safety, reliability, and
security to envision how assurance cases for security ought to work and how the community might pursue

viable technical approaches to realize that vision [Bloomfield 2006b44].

In March 2006, the series continued with a workshop entitled “Assurance Cases for Security:
Communicating Risks in Infrastructures,” which was hosted by the European Commission's Joint
Research Centre in Ispra, Italy. The important conclusion from this workshop was the need to support the
communication of risks between the different stakeholders involved in critical infrastructures; assurance
cases appear to be a viable way of doing this.

41. #dsy643-BSI_ccmb2005
42. #dsy643-BSI_ccmb2005b
43. #dsy643-BSI_bloomfield2006a
44. #dsy643-BSI_bloomfield2006b

#dsy643-BSI_ccmb2005
#dsy643-BSI_ccmb2005b
#dsy643-BSI_bloomfield2006a
#dsy643-BSI_bloomfield2006b


Arguing Security - Creating Security Assurance Cases 13
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

A fourth workshop was held in Edinburgh, Scotland on June 27, 2007 at the Dependable Systems and
Networks conference. The focus of the workshop was on “Assurance Cases for Security – The Metrics
Challenge.” 

Conclusion
Assurance cases for security provide a structured and reviewable set of artifacts that make it possible to
demonstrate to interested parties that the system’s security requirements have been met to a reasonable

degree of certainty.45 Moreover, the creation of an assurance case can help in the planning and conduct of
development. The process of maintaining an assurance case can help to identify new security issues that
may arise when changes are made to the system. Developing and maintaining security cases throughout
the system development life cycle is an emerging area of best practice for systems with critical security
requirements.

A key difference between arguing security and arguing other dependability attributes of a system is the
presence of an intelligent adversary. Intelligent adversaries do not follow predictions; rather they try to
“attack where you least expect.” Having an intelligent adversary implies that security threats will evolve
and adapt. This means that a security case developed today may have its assumptions unexpectedly violated,
or its strength may not be adequate to protect against the attack of tomorrow. This suggests that security
assurance cases will need to be revisited more frequently than assurance cases for safety, reliability, or other
dependability properties.

In this article, we’ve introduced the basic concepts associated with security assurance cases and given
a detailed example of how to construct a case using Goal Structuring Notation. We then showed how
to generalize a portion of a security case into a security case pattern, which can be used as a template to
facilitate the process of constructing other security cases.

One should not think of the creation, use, sharing, and evolution of security cases and security case
patterns as a method that is in competition with other security certification or evaluation methods, tools, or
techniques. Security cases and patterns provide a general framework in which to incorporate and integrate
existing and future certification and evaluation methods into a unified argument and evidentiary structure.
The security case is particularly valuable as a supporting framework because it allows you to make meta-
arguments about the methods, tools, and techniques being used to establish assurance. For example, a
security case can argue that a certification method applied by a third-party certifier provides higher assurance
than the same method applied by the vendor of the product being certified. This type of meta-argument is
outside the scope of the certification method itself.

Though further research and tool development is certainly warranted, organizations can take advantage of
the assurance case method right now. There is much to be gained by integrating even rudimentary security
cases and security case patterns into the development life cycle for any mission-critical system. Even a basic
security case is a far cry above the typical ad hoc arguments and unfounded reassurances in its ability to
provide a compelling argument that a desired security property has been built into a system from the outset
and has continued to be maintained throughout the system development life cycle.

Bibliography

[Adelard 2003] Adelard. The Adelard Safety Case Development

Manual – ASCAD46. Adelard, 2003.

[Bloomfield 2006a] Bloomfield, Robin E.; Guerra, Sofia; Masera,
Marcelo; Miller, Anne; Weinstock, Charles B.
“International Working Group on Assurance Cases

45. We consider a “reasonable degree of certainty” to mean a “tolerable degree of uncertainty.” What is reasonable and tolerable is
dependent upon the perceived threat, the consequences of a security breach, and the costs of security measures, including the
costs associated with creating and maintaining a security case.

http://www.adelard.com/web/hnav/resources/ascad/index.html
http://www.adelard.com/web/hnav/resources/ascad/index.html


Arguing Security - Creating Security Assurance Cases 14
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

(for Security).” IEEE Security & Privacy 4, 3 (May-
June 2006): 66-68.

[Bloomfield 2006b] Bloomfield, Robin E.; Guerra, Sofia; Masera,
Marcelo; Miller, Anne; Saydjari, O. Sami. Assurance
Cases for Security Workshop Report, Version

01c47. Workshop on Assurance Cases for Security,
Arlington, VA, June 13-15, 2005 (2006).

[BSI 2007a] Build Security In. "Business Case Models48," 2007.

[BSI 2007b] Build Security In. "Code Analysis49," 2007

[BSI 2007c] Build Security In. "Coding Practices50," 2007.

[BSI 2007d] Build Security In. "Coding Rules51," 2007.

[BSI 2007e] Build Security In. "Guidelines52," 2007.

[BSI 2007] Build Security In. "Measurement53," 2007.

[CCMB 2006-7] Common Criteria Management Board. Common
Criteria for Information Technology Security

Evaluation Version 3.154, Revision 2, Part 1
(CCMB-2006-09-001, September 2006), Part 2
(CCMB-2007-09-002, September 2007), Part 3
(CCMB-2007-09-003, September 2007).

[CCMB 2007] Common Criteria Management Board. Common
Methodology for Information Technology

Security Evaluation55, Version 3.1, Revision
2 (CCMB-2007-09-004), September 2007.

[Chaki 2006] Chaki, Sagar & Hissam, Scott. Certifying the

Absence of Buffer Overflows56 (CMU/SEI-2006-
TN-030). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2006.

[Goodenough 2004] Weinstock, Charles B. & Goodenough, John
B. Dependability Cases57 (CMU/SEI-2004-TN-016).
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2004.

[Howard 2005] Howard, Michael; LeBlanc, David; & Viega, John.
19 Deadly Sins of Software Security. Emeryville,
CA: McGraw-Hill/Osborne Media, 2005 (ISBN
0-072-26085-8).

[Kelly 1998] Kelly, Tim P. “Arguing Safety.” PhD diss.,
University of York, 1998.

[Kelly 2004] Kelly, Tim P. & Weaver, Rob A. “The Goal
Structuring Notation –A Safety Argument

Notation58.” Proceedings of the Dependable Systems
and Networks 2004 Workshop on Assurance Cases,
July 2004.

[Lipner 2005] Lipner, Steve & Howard, Michael. The Trustworthy

Computing Security Development Lifecycle59 (March
2005).

http://www.csr.city.ac.uk/AssuranceCases/Assurance_Case_WG_Report_180106_v10.pdf
http://www.csr.city.ac.uk/AssuranceCases/Assurance_Case_WG_Report_180106_v10.pdf
http://www.csr.city.ac.uk/AssuranceCases/Assurance_Case_WG_Report_180106_v10.pdf
https://buildsecurityin.us-cert.gov/daisy/adm-bsi/articles/knowledge/business.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/coding.html
https://buildsecurityin.us-cert.gov/daisy/bsi-rules/home.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/guidelines.html
https://buildsecurityin.us-cert.gov/daisy/adm-bsi/articles/best-practices/measurement.html
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn030.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn030.html
http://www.sei.cmu.edu/publications/documents/04.reports/04tn016.html
http://www-users.cs.york.ac.uk/~tpk/dsn2004.pdf
http://www-users.cs.york.ac.uk/~tpk/dsn2004.pdf
http://www-users.cs.york.ac.uk/~tpk/dsn2004.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/sdl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/sdl.asp


Arguing Security - Creating Security Assurance Cases 15
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

[Lipson 2002] Lipson, Howard; Mead, Nancy; & Moore, Andrew.
“Can We Ever Build Survivable Systems from
COTS Components?” Proceedings of the 14th
International Conference on Advanced Information
Systems Engineering (CAiSE' 02). Toronto, Ontario,
Canada, May 27-31, 2002. Heidelberg, Germany:
Springer-Verlag (LNCS 2348), 2002.

[Lipson 2008] Lipson, Howard; & Weinstock, Chuck. “Evidence
of Assurance: Laying the Foundation for a Credible

Security Case60.” Department of Homeland Security
Build Security In Website, May 2008.

[McGraw 2006] McGraw, Gary. Software Security: Building Security
In. Boston, MA: Addison-Wesley Professional, 2006
(ISBN 0-321-35670-5), p. 448.

[Moore 1999] Moore, Andrew P.; Klinker, J. Eric; & Mihelcic,
David M. Ch. 13, “How to Construct Formal
Arguments that Persuade Certifiers,” 285-314.
Industrial-Strength Formal Methods in Practice.
Edited by Michael G. Hinchey & Jonathan P.
Bowen. Heidelberg, Germany: Springer-Verlag
(FACIT series), 1999.

[Park 2001] Park, Joon S.; Montrose, Bruce; & Froscher, Judith
N. “Tools for Information Security Assurance

Arguments61,” 287-296. Proceedings of the 2nd
DARPA Information Survivability Conference and
Exposition (DISCEX 2001), Volume 1. Anaheim,
California, June 2001.

[Plakosh 2006] Plakosh, Daniel. “Detection and Recovery62.”
Material excerpted from Secure Coding in C and C+
+ [Seacord 2006]. Pearson Education, 2006.

[Redwine 2007] Redwine, Jr., Samuel T., ed. Software Assurance: A
Curriculum Guide to the Common Body
of Knowledge to Produce, Acquire, and Sustain

Secure Software63. Software Assurance Workforce
Education and Training Working Group, U.S.
Department of Homeland Security, Draft Version
1.2, October 2007.

[SAE 2004] SAE. JA 1002 Software Reliability Program

Standard64. Society of Automotive Engineers,
January 2004.

[Seacord 2006] Seacord, R. Secure Coding in C and C++. Boston,
MA: Addison-Wesley, 2006.

[Viega 2001] Viega, John. & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley Professional,
2001 (ISBN 0-201-72152-X).

[Voas 1997] Voas, Jeffrey M. & McGraw, Gary. Software Fault
Injection: Inoculating Programs Against Errors,

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/973-BSI.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=932223
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=932223
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/310-BSI.html
http://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
http://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
http://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
http://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
http://www.sae.org/technical/standards/JA1002_200401
http://www.sae.org/technical/standards/JA1002_200401


Arguing Security - Creating Security Assurance Cases 16
ID: 643-BSI | Version: 27 | Date: 11/14/08 3:52:06 PM

47-48. New York, NY: John Wiley & Sons, 1998
(ISBN 0-471-18381-4), pg. 416.

[Weaver 2003] Weaver, R. A. “The Safety of Software –
Constructing and Assuring Arguments.” PhD
Dissertation, University of York, 2003.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission.  Permission is required for any other use.  Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

mailto:permission@sei.cmu.edu

